Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 89
Filter
1.
Microb Cell Fact ; 22(1): 260, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38110987

ABSTRACT

BACKGROUND: RNA-dependent RNA polymerase (RdRp) is a good target of anti-RNA virus agents; not only it is pivotal for the RNA virus replication cycle and highly conserved among RNA viruses across different families, but also lacks human homolog. Recently, human single-chain antibody (HuscFv) that bound to thumb domain of hepatitis C virus (HCV) RNA-dependent RNA polymerase (functionalized NS5B protein) was produced and engineered into cell-penetrating antibody (super antibody) in the form of cell-penetrating peptide (penetratin, PEN)-linked HuscFv (PEN-HuscFv34). The super antibody was produced and purified from inclusion body (IB) of a pen-huscfv34-vector-transformed Escherichia coli. The super antibody inhibited replication of alpha- and beta- coronaviruses, flaviviruses, and picornaviruses that were tested (broadly effective); thus, it has high potential for developing further towards a pan-anti-RNA virus agent. However, production, purification, and refolding of the super antibody molecules from the bacterial IB are laborious and hurdles to large-scale production. Therefore, in this study, Sortase-self-cleave method and bacteria surface display system were combined and modified for the super antibody production. METHODS AND RESULTS: BL21 (DE3) ΔA E. coli, a strain lacking predominant outer membrane protein (OmpA) and ion and OmpT proteases, that displayed a membrane-anchored fusion protein, i.e., chimeric lipoprotein (Lpp')-OmpA', SUMO, Sortase protease, Sortase cleavage site (LPET↓G) and PEN-HuscFv34-6× His was generated. The soluble PEN-HuscFv34-6× His with glycine at the N-terminus could be released from the E. coli surface, simply by incubating the bacterial cells in a Sortase-cleavage buffer. After centrifugation, the G-PEN-HuscFv34-6× His could be purified from the supernatant. The purified G-PEN-HuscFv34-6× retained original cell-penetrating ability (being super antibody) and the broadly effective anti-RNA virus activity of the original IB-derived-PEN-HuscFv34. CONCLUSION: The functionalized super antibody to RNA virus RdRp was successfully produced by using combined Sortase self-cleave and bacterial surface display systems with modification. The display system is suitable for downstream processing in a large-scale production of the super antibody. It is applicable also for production of other recombinant proteins in soluble free-folding form.


Subject(s)
Escherichia coli , Single-Chain Antibodies , Humans , Escherichia coli/metabolism , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Single-Chain Antibodies/genetics , Recombinant Proteins , Membrane Proteins
2.
Vaccines (Basel) ; 11(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38140230

ABSTRACT

(1) Background: Understanding how advanced cancers evade host innate and adaptive immune opponents has led to cancer immunotherapy. Among several immunotherapeutic strategies, the reversal of immunosuppression mediated by regulatory T cells in the tumor microenvironment (TME) using blockers of immune-checkpoint signaling in effector T cells is the most successful treatment measure. Furthermore, agonists of T cell costimulatory molecules (CD40, 4-1BB, OX40) play an additional anti-cancer role to that of checkpoint blocking in combined therapy and serve also as adjuvant/neoadjuvant/induction therapy to conventional cancer treatments, such as tumor resection and radio- and chemo- therapies. (2) Methods and Results: In this study, novel agonistic antibodies to the OX40/CD134 ectodomain (EcOX40), i.e., fully human bivalent single-chain variable fragments (HuscFvs) linked to IgG Fc (bivalent HuscFv-Fcγ fusion antibodies) were generated by using phage-display technology and genetic engineering. The HuscFvs in the fusion antibodies bound to the cysteine-rich domain-2 of the EcOX40, which is known to be involved in OX40-OX40L signaling for NF-κB activation in T cells. The fusion antibodies caused proliferation, and increased the survival and cytokine production of CD3-CD28-activated human T cells. They showed enhancement trends for other effector T cell activities like granzyme B production and lysis of ovarian cancer cells when added to the activated T cells. (3) Conclusions: The novel OX40 agonistic fusion antibodies should be further tested step-by-step toward their safe use as an adjunctive non-immunogenic cancer immunotherapeutic agent.

4.
Vaccines (Basel) ; 11(9)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37766091

ABSTRACT

Many patients develop post-acute COVID syndrome (long COVID (LC)). We compared the immune response of LC and individuals with post-COVID full recovery (HC) during the Omicron pandemic. Two hundred ninety-two patients with confirmed COVID infections from January to May 2022 were enrolled. We observed anti-SARS-CoV-2 receptor-binding domain immunoglobulin G, surrogate virus neutralization test, T cell subsets, and neutralizing antibodies against Wuhan, BA.1, and BA.5 viruses (NeuT). NeuT was markedly reduced against BA.1 and BA.5 in HC and LC groups, while antibodies were more sustained with three doses and an updated booster shot than ≤2-dose vaccinations. The viral neutralization ability declined at >84-days after COVID-19 onset (PC) in both groups. PD1-expressed central and effector memory CD4+ T cells, and central memory CD8+ T cells were reduced in the first months PC in LC. Therefore, booster vaccines may be required sooner after the most recent infection to rescue T cell function for people with symptomatic LC.

5.
Sci Rep ; 13(1): 14336, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37653091

ABSTRACT

Few studies have identified the metabolic consequences of the post-acute phase of nonsevere COVID-19. This prospective study examined metabolic outcomes and associated factors in nonsevere, RT-PCR-confirmed COVID-19. The participants' metabolic parameters, the prevalence of long-term multiple metabolic abnormalities (≥ 2 components), and factors influencing the prevalence were assessed at 1, 3, and 6 months post-onset. Six hundred individuals (mean age 45.5 ± 14.5 years, 61.7% female, 38% high-risk individuals) with nonsevere COVID-19 attended at least one follow-up visit. The prevalence of worsening metabolic abnormalities was 26.0% for BMI, 43.2% for glucose, 40.5% for LDL-c, 19.1% for liver, and 14.8% for C-reactive protein. Except for lipids, metabolic-component abnormalities were more prevalent in high-risk hosts than in healthy individuals. The prevalence of multiple metabolic abnormalities at the 6-month follow-up was 41.3% and significantly higher in high-risk than healthy hosts (49.2% vs 36.5%; P = 0.007). Factors independently associated with a lower risk of these abnormalities were being female, having dyslipidemia, and receiving at least 3 doses of the COVID-19 vaccine. These findings suggest that multiple metabolic abnormalities are the long-term consequences of COVID-19. For both high-risk and healthy individuals with nonsevere COVID-19, healthcare providers should monitor metabolic profiles, encourage healthy behaviors, and ensure complete vaccination.


Subject(s)
Abnormalities, Multiple , COVID-19 , Humans , Female , Adult , Middle Aged , Male , COVID-19/epidemiology , COVID-19 Vaccines , Prospective Studies , C-Reactive Protein
6.
Microbiol Spectr ; 11(4): e0132023, 2023 08 17.
Article in English | MEDLINE | ID: mdl-37409935

ABSTRACT

The bacterial pathogen Burkholderia pseudomallei causes human melioidosis, which can infect the brain, leading to encephalitis and brain abscesses. Infection of the nervous system is a rare condition but is associated with an increased risk of mortality. Burkholderia intracellular motility A (BimA) was reported to play an important role in the invasion and infection of the central nervous system in a mouse model. Thus, to gain insight of the cellular mechanisms underlying the pathogenesis of neurological melioidosis, we explored the human neuronal proteomics to identify the host factors that are up- and downregulated during Burkholderia infection. When infected the SH-SY5Y cells with B. pseudomallei K96243 wild-type (WT), 194 host proteins showed a fold change of >2 compared with uninfected cells. Moreover, 123 proteins showed a fold change of >2 when infected with a knockout bimA mutant (ΔbimA) mutant compared with WT. The differentially expressed proteins were mainly associated with metabolic pathways and pathways linked to human diseases. Importantly, we observed the downregulation of proteins in the apoptosis and cytotoxicity pathway, and in vitro investigation with the ΔbimA mutant revealed the association of BimA with the induction of these pathways. Additionally, we disclosed that BimA was not required for invasion into the neuron cell line but was necessary for effective intracellular replication and multinucleated giant cell (MNGC) formation. These findings show the extraordinary capacity of B. pseudomallei in subverting and interfering with host cellular systems to establish infection and extend our understanding of B. pseudomallei BimA involvement in the pathogenesis of neurological melioidosis. IMPORTANCE Neurological melioidosis, caused by Burkholderia pseudomallei, can result in severe neurological damage and enhance the mortality rate of melioidosis patients. We investigate the involvement of the virulent factor BimA, which mediates actin-based motility, in the intracellular infection of neuroblastoma SH-SY5Y cells. Using proteomics-based analysis, we provide a list of host factors exploited by B. pseudomallei. The expression level of selected downregulated proteins in neuron cells infected with the ΔbimA mutant was determined by quantitative reverse transcription-PCR and was consistent with our proteomic data. The role of BimA in the apoptosis and cytotoxicity of SH-SY5Y cells infected by B. pseudomallei was uncovered in this study. Additionally, our research demonstrates that BimA is required for successful intracellular survival and cell fusion upon infection of neuron cells. Our findings have significant implications for understanding the pathogenesis of B. pseudomallei infections and developing novel therapeutic strategies to combat this deadly disease.


Subject(s)
Burkholderia pseudomallei , Burkholderia , Melioidosis , Neuroblastoma , Mice , Animals , Humans , Burkholderia/physiology , Melioidosis/microbiology , Proteomics , Burkholderia pseudomallei/genetics , Cell Line
7.
Viruses ; 15(6)2023 05 26.
Article in English | MEDLINE | ID: mdl-37376552

ABSTRACT

Engineered nanobodies (VHs) to the SARS-CoV-2 receptor-binding domain (RBD) were generated using phage display technology. A recombinant Wuhan RBD served as bait in phage panning to fish out nanobody-displaying phages from a VH/VHH phage display library. Sixteen phage-infected E. coli clones produced nanobodies with 81.79-98.96% framework similarity to human antibodies; thus, they may be regarded as human nanobodies. Nanobodies of E. coli clones 114 and 278 neutralized SARS-CoV-2 infectivity in a dose-dependent manner; nanobodies of clones 103 and 105 enhanced the virus's infectivity by increasing the cytopathic effect (CPE) in an infected Vero E6 monolayer. These four nanobodies also bound to recombinant Delta and Omicron RBDs and native SARS-CoV-2 spike proteins. The neutralizing VH114 epitope contains the previously reported VYAWN motif (Wuhan RBD residues 350-354). The linear epitope of neutralizing VH278 at Wuhan RBD 319RVQPTESIVRFPNITN334 is novel. In this study, for the first time, we report SARS-CoV-2 RBD-enhancing epitopes, i.e., a linear VH103 epitope at RBD residues 359NCVADVSVLYNSAPFFTFKCYG380, and the VH105 epitope, most likely conformational and formed by residues in three RBD regions that are spatially juxtaposed upon the protein folding. Data obtained in this way are useful for the rational design of subunit SARS-CoV-2 vaccines that should be devoid of enhancing epitopes. VH114 and VH278 should be tested further for clinical use against COVID-19.


Subject(s)
COVID-19 , Single-Domain Antibodies , Animals , Humans , SARS-CoV-2 , Epitopes , Antibodies, Viral , COVID-19 Vaccines , Escherichia coli/metabolism , Antibodies, Neutralizing , Spike Glycoprotein, Coronavirus
8.
Trop Med Infect Dis ; 8(4)2023 Mar 23.
Article in English | MEDLINE | ID: mdl-37104311

ABSTRACT

The dynamics of humoral immune responses of patients after SARS-CoV-2 infection is unclear. This study prospectively observed changes in anti-receptor binding domain immunoglobulin G (anti-RBD IgG) and neutralizing antibodies against the Wuhan and Delta strains at 1, 3, and 6 months postinfection between October 2021 and May 2022. Demographic data, clinical characteristics, baseline parameters, and blood samples of participants were collected. Of 5059 SARS-CoV-2 infected adult patients, only 600 underwent assessment at least once between 3 and 6 months after symptom onset. Patients were categorized as immunocompetent (n = 566), immunocompromised (n = 14), or reinfected (n = 20). A booster dose of a COVID-19 vaccine was strongly associated with maintained or increased COVID-19 antibody levels. The booster dose was also more strongly associated with antibody responses than the primary vaccination series. Among patients receiving a booster dose of a mRNA vaccine or a heterologous regimen, antibody levels remained steady or even increased for 3 to 6 months after symptom onset compared with inactivated or viral vector vaccines. There was a strong correlation between anti-RBD IgG and neutralizing antibodies against the Delta variant. This study is relevant to resource-limited countries for administering COVID-19 vaccines 3 to 6 months after infection.

9.
Antibiotics (Basel) ; 12(3)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36978447

ABSTRACT

(1) Background: Acinetobacter baumannii is well known as a causative agent of severe hospital-acquired infections, especially in intensive care units. The present study characterised the genetic traits of biofilm-forming carbapenem-resistant A. baumannii (CRAB) clinical isolates. Additionally, this study determined the prevalence of biofilm-producing A. baumannii isolates from a tertiary care hospital and investigated the association of biofilms with the distribution of biofilm-related and antibiotic resistance-associated genotypes. (2) Methods: The 995 non-duplicate A. baumannii isolates were identified, and their susceptibilities to different antibiotics were determined using the disk diffusion method. Using the modified microtiter plate assay, the CRAB isolates were investigated for their biofilm formation ability. Hemolysin and protease activities were determined. CRABs were subjected to polymerase chain reaction (PCR) assays targeting blaVIM, blaNDM, blaIMP, blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, csuE and pgaB genes. Individual CRAB isolates were identified for their DNA fingerprint by repetitive element sequence-based (REP)-PCR. (3) Results: Among all A. baumannii isolates, 172 CRABs were identified. The major antibiotic resistance gene among the CRAB isolates was blaOXA-51-like (100%). Ninety-nine isolates (57.56%) were biofilm producers. The most prevalent biofilm gene was pgaB (79.65%), followed by csuE (76.74%). Evidence of virulence phenotypes revealed that all CRAB exhibited proteolytic activity; however, only four isolates (2.33%) were positive for the hemolytic-producing phenotype. REP-PCR showed that 172 CRAB isolates can be divided into 36-DNA fingerprint patterns. (4) Conclusions: The predominance of biofilm-producing CRAB isolates identified in this study is concerning. The characterisation of risk factors could aid in controlling the continual selection and spreading of the A. baumannii phenotype in hospitals, thereby improving patient care quality.

10.
Allergy ; 78(4): 1088-1103, 2023 04.
Article in English | MEDLINE | ID: mdl-36153808

ABSTRACT

BACKGROUND: One of the most common cockroach types in urban areas, the American cockroach (Periplaneta americana), has been reported to impose an increased risk of allergies and asthma. Limited groups of allergens (Per a 1-13) have been identified in this species due to the lack of genome-related information. METHODS: To expand the allergen profile of P. americana, genomic, transcriptomic, and proteomic approaches were applied. With the support of a high-quality genome assembled using nanopore, Illumina, and Hi-C sequencing techniques, potential allergens were identified based on protein homology. Then, using enzyme-linked immunosorbent assay, selected allergens were tested in Thai patients allergic to P. americana. RESULTS: A chromosomal-level genome of P. americana (3.06 Gb) has been assembled with 94.6% BUSCO completeness, and its contiguity has been significantly improved (N50 = 151 Mb). A comprehensive allergen profile has been characterized, with seven novel groups of allergens, including enolase (Per a 14), cytochrome C (Per a 15), cofilin (Per a 16), alpha-tubulin (Per a 17), cyclophilin (Per a 18), porin3 (Per a 19), and peroxiredoxin-6 (Per a 20), showing IgE sensitivity in enzyme-linked immunosorbent assay. A new isoallergen of tropomyosin (Per a 7.02) and multiple potential isoallergens of Per a 5 were revealed using bioinformatics and proteomic approaches. Additionally, comparative analysis of P. americana with the closely related Blattodea species revealed the possibility of cross-reaction. CONCLUSION: The high-quality genome and proteome of P. americana are beneficial in studying cockroach allergens at the molecular level. Seven novel allergen groups and one isoallergen in Per a 7 were identified.


Subject(s)
Cockroaches , Hypersensitivity , Periplaneta , Animals , Humans , Proteomics , Allergens/genetics , Hypersensitivity/genetics
11.
J Virol Methods ; 311: 114627, 2023 01.
Article in English | MEDLINE | ID: mdl-36191664

ABSTRACT

Elephant endotheliotropic herpesvirus (EEHV) is the causative agent of EEHV-hemorrhagic disease (EEHV-HD) in elephants worldwide. This disease is highly virulent and a predominant cause of fatalities in young Asian elephants. Rapid diagnosis and aggressive therapies have been determined to be a key strategy in the successful treatment of this disease. Herein, we have developed the immunochromatographic strip test for EEHV detection. Accordingly, 31.2 kDa of partial EEHV DNA polymerase (DNApol) protein was expressed in Escherichia coli and used to generate rabbit polyclonal anti-EEHV DNApol antibodies. These were then used to develop an ICS test for EEHV antigen detection using the double-antibody sandwich colloidal gold method. Anti-EEHV DNApol antibodies conjugated with 40 nm colloidal gold solution were used as a detector, while rabbit anti-EEHV DNApol and goat anti-rabbit IgG antibodies immobilized on the nitrocellulose membrane were used as the test and control lines, respectively. The test had a detection limit of 1.25 × 105 viral genome copies (vgc)/mL of EEHV obtained from blood samples. Moreover, no specialized equipment or laboratory infrastructure was required in the administration of this test. This developed ICS test for EEHV antigen detection can be used in field application for the rapid detection of EEHV in resource-limited environments.


Subject(s)
Elephants , Herpesviridae Infections , Herpesviridae , Animals , Rabbits , Herpesviridae/genetics , Herpesviridae Infections/diagnosis , Herpesviridae Infections/veterinary , Antigens, Viral , Gold Colloid
12.
Medicine (Baltimore) ; 101(45): e31681, 2022 Nov 11.
Article in English | MEDLINE | ID: mdl-36397337

ABSTRACT

This study aimed to evaluate the efficacy of early antiviral treatment in preventing clinical deterioration in asymptomatic or mildly symptomatic severe acute respiratory syndrome coronavirus 2 infected (COVID-19) patients in home isolation and to share our experiences with the ambulatory management of nonsevere COVID-19 patients. This retrospective study included mild COVID-19 adult patients confirmed by real-time reverse transcription-polymerase chain reaction. They received care via an ambulatory management strategy between July 2021 and November 2021. Demographic data, clinical progression, and outcomes were collected. Both descriptive and inferential statistics were performed to illustrate the cohort's characteristic and outcomes of the study. Univariable and multivariable logistic regression models were employed to investigate the associations between clinical factors and disease progression. A total of 1940 patients in the Siriraj home isolation system met the inclusion criteria. Their mean age was 42.1 ±â€…14.9 years, with 14.2% older than 60 years, 54.3% female, and 7.1% with a body weight ≥ 90 kg. Only 115 patients (5.9%) had deterioration of clinical symptoms. Two-thirds of these could be managed at home by dexamethasone treatment under physician supervision; however, 38 of the 115 patients (2.0% of the study cohort) needed hospitalization. Early favipiravir outpatient treatment (≤ 5 days from onset of symptoms) in nonsevere COVID-19 patients was significantly associated with a lower rate of symptom deterioration than late favipiravir treatment (50 [4.6%] vs 65 [7.5%] patients, respectively; P = .008; odds ratio 1.669; 95% confidence interval, 1.141-2.441). The unfavorable prognostic factors for symptom deterioration were advanced age, body weight ≥ 90 kg, unvaccinated status, higher reverse transcription-polymerase chain reaction cycle threshold, and late favipiravir treatment. The early delivery of essential treatment, including antiviral and supervisory dexamethasone, to ambulatory nonsevere COVID-19 patients yielded favorable outcomes during the COVID-19 pandemic in Thailand.


Subject(s)
COVID-19 Drug Treatment , Influenza, Human , Adult , Humans , Female , Middle Aged , Male , Antiviral Agents/therapeutic use , Pandemics , Retrospective Studies , Body Weight , Dexamethasone/therapeutic use
13.
Biology (Basel) ; 11(10)2022 Oct 06.
Article in English | MEDLINE | ID: mdl-36290370

ABSTRACT

A clique of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp. (ESKAPE) bugs is the utmost causative agent responsible for multidrug resistance in hospital settings. These microorganisms employ a type of cell-cell communication termed 'quorum sensing (QS) system' to mediate population density and synchronously control the genes that modulate drug resistance and pathogenic behaviors. In this article, we focused on the present understanding of the prevailing QS system in ESKAPE pathogens. Basically, the QS component consisted of an autoinducer synthase, a ligand (e.g., acyl homoserine lactones/peptide hormones), and a transcriptional regulator. QS mediated expression of the bacterial capsule, iron acquisition, adherence factors, synthesis of lipopolysaccharide, poly-N-acetylglucosamine (PNAG) biosynthesis, motility, as well as biofilm development allow bacteria to promote an antimicrobial-resistant population that can escape the action of traditional drugs and endorse a divergent virulence production. The increasing prevalence of these harmful threats to infection control, as well as the urgent need for effective antimicrobial strategies to combat them, serve to highlight the important anti-QS strategies developed to address the difficulty of treating microorganisms.

14.
Vet World ; 15(7): 1887-1895, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36185513

ABSTRACT

Background and Aim: Bacteria of the genera Vibrio and Aeromonas cause seafood-borne zoonoses, which may have a significant impact on food safety, economy, and public health worldwide. The presence of drug-resistant and biofilm-forming phenotypes in the food chain increases the risk for consumers. This study aimed to investigate the characteristics, virulence, biofilm production, and dissemination of antimicrobial-resistant pathogens isolated from seafood markets in Bangkok, Thailand. Materials and Methods: A total of 120 retail seafood samples were collected from 10 local markets in Bangkok and peripheral areas. All samples were cultured and the Vibrio and Aeromonas genera were isolated using selective agar and biochemical tests based on standard protocols (ISO 21872-1: 2017). The antibiotic susceptibility test was conducted using the disk diffusion method. The presence of hemolysis and protease production was also investigated. Polymerase chain reaction (PCR) was used to determine the presence of the hlyA gene. Furthermore, biofilm formation was characterized by microtiter plate assay and scanning electron microscopy. Results: The bacterial identification test revealed that 35/57 (61.4%) belonged to the Vibrio genus and 22/57 (38.6%) to the Aeromonas genus. The Kirby-Bauer test demonstrated that 61.4% of the isolates were resistant to at least one antibiotic and 45.61% had a high multiple antibiotic resistance index (≥0.2). PCR analysis indicated that 75.44% of the bacteria harbored the hlyA gene. Among them, 63.16% exhibited the hemolysis phenotype and 8.77% showed protease activity. The biofilm formation assay demonstrated that approximately 56.14% of all the isolates had the potential to produce biofilms. The moderate biofilm production was the predominant phenotype. Conclusion: The results of this study provide evidence of the multiple drug resistance phenotype and biofilm formation capacity of Vibrio and Aeromonas species contaminating raw seafood. Effective control measures and active surveillance of foodborne zoonoses are crucial for food safety and to decrease the occurrence of diseases associated with seafood consumption.

15.
Biology (Basel) ; 11(7)2022 Jul 06.
Article in English | MEDLINE | ID: mdl-36101399

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) infection is an important acute diarrheal disease of swine that results in economic and industrial losses worldwide. The clinical manifestations in infected piglets are severe diarrhea, dehydration with milk curd indigestion, leading to death. The diagnosis of PEDV is essential for monitoring and managing the disease. PEDV can be detected and identified by serology and the nucleic acid of the virus in clinical samples. Therefore, a novel isothermal amplification and detection technique, reverse transcription-recombinase polymerase amplification couple nucleic acid lateral flow (RT-RPA-NALF) was developed for the rapid detection of PEDV. Qualitative reverse transcription-polymerase chain reaction (RT-qPCR) was established as the gold standard assay to compare results. Specific primer pairs and probes were designed, and RT-RPA conditions were optimized to amplify the M gene of PEDV. The established RT-RPA-NALF assay could finish in 25 min at a temperature of 42 °C and the amplicon interpreted by visual detection. The developed RT-RPA-NALF assay was specific to the M gene of PEDV, did not detect other common swine diarrhea pathogens, and showed minimal detection at 102 TCID50/mL PEDV. The RT-RPA-NALF assay can detect PEDV in 5 simulated fecal samples. Furthermore, in 60 clinical fecal samples, the results of RT-RPA-NALF correlated with RT-qPCR assay, which provides sensitivity of 95.65% and specificity of 100%, with a coincident rate of 98.33%. The rapid RT-RPA-NALF is simple and rapid, increases high sensitivity, and can be used in the field.

16.
Front Microbiol ; 13: 926929, 2022.
Article in English | MEDLINE | ID: mdl-35935185

ABSTRACT

RNA-dependent RNA polymerase (RdRp) is a unique and highly conserved enzyme across all members of the RNA virus superfamilies. Besides, humans do not have a homolog of this protein. Therefore, the RdRp is an attractive target for a broadly effective therapeutic agent against RNA viruses. In this study, a formerly generated cell-penetrating human single-chain antibody variable fragment (superantibody) to a conformational epitope of hepatitis C virus (HCV) RdRp, which inhibited the polymerase activity leading to the HCV replication inhibition and the host innate immunity restoration, was tested against emerging/reemerging RNA viruses. The superantibody could inhibit the replication of the other members of the Flaviviridae (DENV serotypes 1-4, ZIKV, and JEV), Picornaviridae (genus Enterovirus: EV71, CVA16), and Coronaviridae (genus Alphacoronavirus: PEDV, and genus Betacoronavirus: SARS-CoV-2 (Wuhan wild-type and the variants of concern), in a dose-dependent manner, as demonstrated by the reduction of intracellular viral RNAs and numbers of the released infectious particles. Computerized simulation indicated that the superantibody formed contact interfaces with many residues at the back of the thumb domain (thumb II site, T2) of DENV, ZIKV, JEV, EV71, and CVA16 and fingers and thumb domains of the HCV and coronaviruses (PEDV and SARS-CoV-2). The superantibody binding may cause allosteric change in the spatial conformation of the enzyme and disrupt the catalytic activity, leading to replication inhibition. Although the speculated molecular mechanism of the superantibody needs experimental support, existing data indicate that the superantibody has high potential as a non-chemical broadly effective anti-positive sense-RNA virus agent.

17.
Front Microbiol ; 13: 933249, 2022.
Article in English | MEDLINE | ID: mdl-35935230

ABSTRACT

Porcine epidemic diarrhea virus (PEDV) is the causative agent of a highly contagious enteric disease of pigs characterized by diarrhea, vomiting, and severe dehydration. PEDV infects pigs of all ages, but neonatal pigs during the first week of life are highly susceptible; the mortality rates among newborn piglets may reach 80-100%. Thus, PEDV is regarded as one of the most devastating pig viruses that cause huge economic damage to pig industries worldwide. Vaccination of sows and gilts at the pre-fertilization or pre-farrowing stage is a good strategy for the protection of suckling piglets against PEDV through the acquisition of the lactating immunity. However, vaccination of the mother pigs for inducing a high level of virus-neutralizing antibodies is complicated with unstandardized immunization protocol and unreliable outcomes. Besides, the vaccine may also induce enhancing antibodies that promote virus entry and replication, so-called antibody-dependent enhancement (ADE), which aggravates the disease upon new virus exposure. Recognition of the virus epitope that induces the production of the enhancing antibodies is an existential necessity for safe and effective PEDV vaccine design. In this study, the enhancing epitope of the PEDV spike (S) protein was revealed for the first time, by using phage display technology and mouse monoclonal antibody (mAbG3) that bound to the PEDV S1 subunit of the S protein and enhanced PEDV entry into permissive Vero cells that lack Fc receptor. The phages displaying mAbG3-bound peptides derived from the phage library by panning with the mAbG3 matched with several regions in the S1-0 sub-domain of the PEDV S1 subunit, indicating that the epitope is discontinuous (conformational). The mAbG3-bound phage sequence also matched with a linear sequence of the S1-BCD sub-domains. Immunological assays verified the phage mimotope results. Although the molecular mechanism of ADE caused by the mAbG3 via binding to the newly identified S1 enhancing epitope awaits investigation, the data obtained from this study are helpful and useful in designing a safe and effective PEDV protein subunit/DNA vaccine devoid of the enhancing epitope.

18.
Vaccines (Basel) ; 10(7)2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35891295

ABSTRACT

Background: In December 2021, Omicron replaced Delta as the dominant coronavirus disease 2019 (COVID-19) variant in Thailand. Both variants embody diverse epidemiological trends and immunogenicity. We investigated whether Delta and Omicron patients' biological and clinical characteristics and immunogenicity differed post-COVID-19 infection. Methods: This retrospective cohort study investigated the clinical outcomes and laboratory data of 5181 patients with mild-to-moderate COVID-19 (Delta, 2704; Omicron, 2477) under home isolation. We evaluated anti-receptor-binding domain immunoglobulin G (anti-RBD IgG) and surrogate viral neutralizing (sVNT) activity in 495 individuals post-COVID-19 infection during the Delta pandemic. Results: Approximately 84% of all patients received favipiravir. The median cycle threshold (Ct) values were lower for Omicron patients than Delta patients (19 vs. 21; p < 0.001), regardless of vaccination status. Upper respiratory tract symptoms were more frequent with Omicron patients than Delta patients. There were no significant associations between Ct and Omicron symptoms (95% confidence interval 0.98−1.02). A two-dose vaccine regimen reduced hospital readmission by 10% to 30% and death by under 1%. Anti-RBD IgG and sVNT against Delta were higher among older individuals post-COVID-19 infection. Older individuals expressed anti-RBD IgG and sVNT for a more extended period after two-dose vaccination than other age groups. Conclusions: After a full vaccination course, breakthrough mild-to-moderate Delta and Omicron infections have limited immunogenicity. Prior infections exert reduced protection against later reinfection or infection from novel variants. However, this protection may be sufficient to prevent hospitalization and death, particularly in countries where vaccine supplies are limited.

19.
Medicine (Baltimore) ; 101(30): e29888, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35905240

ABSTRACT

This study aimed to assess the clinical characteristics of patients who registered at the Siriraj Favipiravir Clinic and to share our experiences in this comparatively unique clinical setting. This retrospective study included patients who registered at the Siriraj Favipiravir Clinic during August 11, 2021 to September 14, 2021. Included adult patients were those with severe acute respiratory syndrome coronavirus 2 (coronavirus disease 2019 [COVID-19]) infection confirmed by antigen test kit (ATK) or real-time reverse transcription-polymerase chain reaction, no favipiravir contraindication, no prior COVID-19 treatment, and not receiving care from another medical facility. Demographic data and outcomes were collected and analyzed. Of the 1168 patients (mean age: 44.8 ± 16.4 years, 55.7% female) who registered at the clinic, 117 (10%) did not meet the treatment criteria, and 141 (12%) patients did not pick up their medication. One-third of patients had at least 1 symptom that indicated severe disease. Higher proportion of unvaccinated status (56.7% vs 47.5%, P = .005), higher proportion of persons with risk factors for disease progression (37.7% vs 31.3%, P = .028), and longer duration between the date of clinic registration and the date of positive diagnostic test (3 vs 2 days, P = .004) were significantly more commonly observed in the severe disease group compared to the nonsevere disease group. The duration between symptom onset and the date of clinic registration was significantly longer in the real-time reverse transcription-polymerase chain reaction group than in the ATK group (6 vs 4 days, P < .001). Most patients (90.0%) had completed favipiravir treatment regimen. The improvement and mortality rates were 86.7% and 1.2%, respectively. COVID-19 severity is associated with vaccination status, baseline risk factors, and timing between disease detection and treatment. The use of ATK influences patients to seek treatment significantly earlier in ambulatory setting. Our early diagnosis and antiviral treatment strategy yielded favorable results in an outpatient setting during a COVID-19 outbreak in Thailand.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Adult , Antiviral Agents , COVID-19/diagnosis , COVID-19 Testing , Early Diagnosis , Female , Humans , Male , Middle Aged , Retrospective Studies , Thailand/epidemiology , Treatment Outcome
20.
Int J Mol Sci ; 23(12)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35743031

ABSTRACT

Broadly effective and safe anti-coronavirus agent is existentially needed. Major protease (3CLpro) is a highly conserved enzyme of betacoronaviruses. The enzyme plays pivotal role in the virus replication cycle. Thus, it is a good target of a broadly effective anti-Betacoronavirus agent. In this study, human single-chain antibodies (HuscFvs) of the SARS-CoV-2 3CLpro were generated using phage display technology. The 3CLpro-bound phages were used to infect Escherichia coli host for the production the 3CLpro-bound HuscFvs. Computerized simulation was used to guide the selection of the phage infected-E. coli clones that produced HuscFvs with the 3CLpro inhibitory potential. HuscFvs of three phage infected-E. coli clones were predicted to form contact interface with residues for 3CLpro catalytic activity, substrate binding, and homodimerization. These HuscFvs were linked to a cell-penetrating peptide to make them cell-penetrable, i.e., became superantibodies. The superantibodies blocked the 3CLpro activity in vitro, were not toxic to human cells, traversed across membrane of 3CLpro-expressing cells to co-localize with the intracellular 3CLpro and most of all, they inhibited replication of authentic SARS-CoV-2 Wuhan wild type and α, ß, δ, and Omicron variants that were tested. The superantibodies should be investigated further towards clinical application as a safe and broadly effective anti-Betacoronavirus agent.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Coronavirus 3C Proteases , Escherichia coli , Humans , Protease Inhibitors/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...